Q.P. Code: 16MC813

Reg. No.

No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

MCA II Year I Semester (R16) Regular Examinations November 2017 OPERATING SYSTEMS

Time: 3 hours

Max. Marks: 60

(Answer all Five Units **5** X **12** = **60** Marks)

UNIT-I

1 Define system calls. Explain about different types of system calls provided by an operating system.

OR

2	а	Write short notes on : Simple Batch systems, Multi-Programmed systems, Time-	6M
		Shared systems	OIVI
	b	Explain the services provided by an operating system.	6M
		UNIT-II	
3	а	Discuss FCFS CPU scheduling algorithms in detail with suitable examples	5M
	b	Explain the process control block (PCB) of a process in detail.	7M
		OR	
4	a	What is critical section? What requirements are to be satisfied while solving the critical section problem?	7M
	b	Consider the following set of processes, with the length of the CPU burst given in milliseconds:	

Process	Burst time			
P ₁	6			
P ₂	8			
P ₃	7			
P ₄	3			

Draw Gantt chart that i	llustrate the						
execution of these process	es using the $5N$						
SJF and find the average v	vaiting time						
of these processes	using SJF						
scheduling algorithm.							

UNIT-III

5	a Explain Segmentation technique in brief.								
	b Write a short note for the following i) Fragmentation ii) Thrashing	6M							
	OR								
6	What is paging? Explain Paging technique in detail with suitable example.	12M							
	UNIT-IV								
7	a Explain free space management in brief.	4M							
	b Discuss about SCAN & C-SCAN disk scheduling in detail with example	8M							
	OR								
8	Explain Single level directory structure, Two level directory structure and Tree- Structure directories in detail.	12M							
UNIT-V									
9	Define Safe and Unsafe Sate. Explain Bankers Algorithm for Deadlock avoidance in detail.	12M							
OR									
10	a Define the deadlock problem. Write deadlock characterization or conditions for	6M							

0	а	Define the deadlock problem. Write deadlock characterization or conditions for	6M
		deadlock.	
	b	Explain different Security Violations of the system	6M

*** END ***

Page 1 of 1